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Abstract

This paper presents an approximate, frequency-domain approach to modelling complex structures (CSs) with localised

nonlinearities, designated here as complex sub-systems. This consistent approach to modelling CSs presented here aims to

improve the computational efficiency, which in cases when nonlinearities are included, is a major problem when CSs with

many degrees of freedom are modelled. This approach proposes sub-structuring of the CS into its linear and nonlinear

parts in the first stage. Classical reduction of the linear part and the nonlinear model reduction and the polynomial

approximation for the nonlinear part are employed in the second stage to decrease the overall number of degrees of

freedom. Finally, an additional, well-suited harmonic-balance and describing-function-based approximation is used for the

nonlinear part, introducing the multi-coordinate describing functions (MCDFs) and the multi-coordinate describing-function

matrix (MCDFM). Together with the matrices of the linear part of the localised nonlinearity, the MCDFM forms the so-

called harmonic nonlinear super-model (HNSM). The HNSM introduced is well-suited for use with FRF coupling in the

frequency domain. Two numerical case studies as well as an experimental case study showed that this approach is suitable

for the steady-state vibration of CSs with localised nonlinearities, while at the same time, the efficient approach makes

it possible to perform parametric analyses. It is shown that, with some restrictions, an optional reconstruction is also

possible, which makes this approach even more efficient.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In structural dynamics, complex structures (CSs) are structures whose models usually have many degrees of
freedom (dofs) and also, on occasions, complex sub-systems (CSSs), which are in general nonlinear. CSSs,
therefore, represent localised nonlinearities. In order for them to be suitable for solving numerically, overall
models of CSs, e.g., electro-motors, washing machines, suction-units, engines, etc., usually need to be
simplified using either linear models instead of nonlinear ones, using reduction, or some alternative
approaches to solving the problem. Ewins and Inman [1], and Dascotte and Swindell [2] stated that there is the
following tendency in the modelling of structures: ‘‘The model should be as simple as possible while still

reflecting the most significant properties’’. In terms of the number of dofs, the models should be smaller, not
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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bigger. This rule is especially true for nonlinear structures, CSSs in our case, whose models are mostly either
models with equivalent linear parameters obtained using updating, e.g. Refs. [3–6], or, on the other hand,
models where a certain nonlinearity is investigated in a detailed way, but with simplified models of the
surrounding structure, e.g. Ref. [7]. But, in cases when a certain CSS is represented by an equivalent, linear
model, the nonlinear effects cannot be included in the overall model of the CS, while the linear-model
parameters are operating-point-dependent. The cost- and time-expensive updating of the CSS’s nonlinear
properties is required is such cases. On the other hand, with respect to numerical solving capabilities, one
cannot afford to include detailed models of CSSs into the model of the CS.

While the exact, time-domain methods of direct integration are usually not suitable for simulating the
dynamics of CSs, a frequency-domain approach can be used as an efficient counterpart if the assumption of a
steady-state condition holds, which is reasonable for many engineering problems. In such cases, the principles
of harmonic balance or a describing function are usually employed, but the nonlinear part of the whole
structure, CSSs, are usually modelled as systems with parallel springs, as the most simple systems, which
are especially suitable for harmonic-balance-based approaches [8–11]. Although they are nonlinear, these
‘‘parallel springs’’ [8–13] do not usually have a meaningful physical connection with real sub-systems,
like bearings, bolted joints, weld-spots, etc., so their properties cannot be derived directly; instead, again, some
kind of updating or identification is in general required.

To partially overcome the limitations in modelling CSSs just mentioned, especially the need for updating,
our goal in this paper is to present a new, frequency-domain approach to building simple but still nonlinear
super-models of CSSs that can be easily incorporated into the overall CS model and, eventually, be suitable for
efficient numerical analyses, even in the parametric sense. Here the focus will be on the determination of the
stiffness nonlinearity while the mass and damping of a CSS are known a priori or can be easily determined. To
present the main idea behind this approach, the generation of a detailed nonlinear model of a certain CSS, e.g.,
a finite-element-based model, which is further reduced and approximated in order to derive a simple but still
valid CSS model for the use with the coupling in the frequency domain, this paper is organized as follows:
Section 2 presents the new approach, the generation of the harmonic nonlinear super-model (HNSM) as well
as its incorporation to the overall, linear structure, Section 3 describes the approach to solving of the overall,
nonlinear response the CS and with the optional reconstruction, Section 4 shows three numerical case studies
to show the usability of the proposed approach while Section 5 describes the procedure and results of the
experimental validation of the approach which are also summarized in the conclusions.
2. HNSM

Following the idea mentioned in the preceding section, the problem of modelling CSs in the frequency
domain can be schematically depicted as in Fig. 1. The approach shown in Fig. 1 starts with detailed models of
both the linear part (LS) and the nonlinear part (CSS) of the CS. While the obtaining of valid models for the
LS is a well-established field in structural dynamics, e.g. Refs. [1,4], the focus here will be mainly on how to
determine the so-called HNSM, assuming a valid model of the LS can be obtained. Working in the frequency
domain actually means that one is working with the response models of the CSS and LS parts of the CS, and
that FRF coupling techniques [3,9,14] are used to couple these two sub-systems together. For that, the CSS
response model needs to be in a form suitable for coupling with the linear part of the CS. Here, the FRF
coupling approach from Liu [3,14] will be used that relates the amplitudes of the forcing force F and the
nonlinear response amplitudes X and was used by Liu for linear systems only. It will be shown that the same
approach can be used for coupling the linear and nonlinear response models together. When only the
fundamental frequency is considered and when the CSS model has only the connection (c) DOFs, one can
write [3,9,14]

XI

XC

 !
¼

Hii �HicðIþ ZCSSHccÞ
�1ZCSSHci HicðIþ ZCSSHccÞ

�1

Hci �HccðIþ ZCSSHccÞ
�1ZCSSHci HccðIþ ZCSSHccÞ

�1

" #
FI

FC

 !
, (1)

where I and C indices designate the internal and coupling dofs of the connected structure and i and c are the
internal and coupling coordinates of the de-coupled (collected) structure as defined in Refs. [9,14]. H are FRF



ARTICLE IN PRESS

Complex structure

Fig. 1. A consistent approach to solving a CS with localised nonlinearities; suitable for the frequency domain and the steady-state

condition.

(a) (b) (c) (d)

Fig. 2. The complex structure and complex sub-systems (CSSs) de-coupled (a), a schematic representation of the simplest CSSs model—

parallel springs (b) and a schematic representation of a detailed CSSs along with the transformation to the reduced, harmonic nonlinear

super-model (c).
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matrices and ZCSS represents the displacement-dependent nonlinear impedance matrix of the CSS model
without internal DOFs while I is the identity matrix. As ZCSS is a displacement-dependent impedance matrix,
Eq. (1) represents a set of nonlinear algebraic equations that can be solved using the Newton–Raphson
approach, for example. Using reduction for the LS and CSS models, and also reconstruction, as will be seen
later, Eq. (1) can be solved more efficiently than a system of nonlinear differential equations in the time-
domain approaches. Also, the HNSM approach is more general (Fig. 2(b)) than the common approach of
using parallel springs (Fig. 2(a)), e.g. Refs. [8–13], whose parameters cannot be determined from a detailed, FE
CSS model. In the subsections that follow, the determination of the HNSM will be shown only for cases of
symmetric stiffness nonlinearities.
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2.1. Nonlinear model reduction and approximation

According to the FRF coupling of the LS and CSS parts of the CS, Eq. (1), the displacement-dependent
nonlinear impedance ZCSS needs to be built to reflect the relations between the connection coordinates of the
CSS model. For that reason, the connection dofs ðcÞ, solid circles in Figs. 2(a)–(c) and 3, are also the master
dofs of the CSS model. Mnl, Knl and Cnl are nonlinear stiffness, nonlinear mass and nonlinear damping
matrices of the detailed CSS, while ZðoÞCSS represents the nonlinear impedance matrix of the CSS model,
where GðXcÞnl is the nonlinear stiffness part of the ZCSS, whileMCSS and CCSS are linear matrices of the CSS. A
CSS model described by ZðoÞCSS is the HNSM.

Moreover, as our approach is to be used for models in the form of localised stiffness nonlinearities, the mass
of the CSS can simply be a lumped representation with respect to the master dofs and can easily be determined
while the damping can be simply artificially added, identified or even neglected. Further, having a detailed
model of the CSS, the static nonlinear force–displacement relation is known for each dof of the detailed CSS
model and, therefore, also for all the retained dofs of the corresponding, reduced HNSM. Assuming a
symmetric stiffness nonlinearity and a polynomial approximation with linear and cubic terms, the general,
nonlinear force–displacement approximation model for the HNSM could be (for the kth internal force, f̂ ink

)

f̂ ink
ðxÞ ¼

Xn

j¼1

akj
xj þ

Xn

j¼1

bkj
x3

j þ
Xn�1
j¼1

Xn

i¼jþ1

ckj
x2

j xi þ
Xn�1
j¼1

Xn

i¼jþ1

dkj
xjx

2
i (2)

with unknown coefficients a, b, c and d, where xi is the displacement of the HNSM at ith dof. As the exact
force–displacement relation at the retained (master) dofs is known from a detailed CSS model, comparing this
model to the model from Eq. (2) in a least-squares sense, the coefficients p ¼ faij ; bij ; . . .g from Eq. (2) can be
calculated. The random generation of points is a suitable choice when calculating the coefficients p. This
procedure corresponds to the nonlinear model reduction and approximation, being a simple representation of
the CSS, having only a few dofs as well as a simple analytical force–displacement relation. The reason for
using the polynomial approximation is because this type of approximation is well suited for use with the
describing-function approach.
2.2. Multi-coordinate describing-function matrix

The final phase of building the HNSM is another approximation, the describing-function-based
approximation, e.g. Refs. [9–11,13]. This is an equivalent linearization approach and can be used for 1dof
systems directly, while in the case of mdof structures, the so-called inter-coordinate notation, ykl ¼ xk � xl , is
usually used; this corresponds to the use of a model of parallel springs [8–13]. In our case a suitable
approximation needs to be defined for terms like akxr

i x
q
j from the kth internal force from Eq. (2). Following

the basic describing-function approach, e.g. Refs. [9–11], when there is a harmonic forcing function to a
nonlinear mdof system, feiot, the response at each coordinate is also approximately harmonic, and the same
Fig. 3. A schematic view of the overall and efficient process of de-coupling, reduction of the linear (LS) and nonlinear parts (CSS),

coupling, and finally, the optional reconstruction of the CS at the end.



ARTICLE IN PRESS
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applies to each internal force f̂ ink
acting on the CSS. In the case of symmetric nonlinearities, only the first term

in the truncated, complex Fourier series can be retained, and the responses at some jth and some ith
coordinates are then approximated in the form [9–11]

xi � X ie
iot; x̄i ¼ IðxiÞ ¼ X̄ k sinðotþ fiÞ; X i 2 C; X̄ i 2 R,

xj � X je
iot; x̄j ¼ IðxjÞ ¼ X̄ j sinðotþ fjÞ; X j 2 C; X̄ j 2 R (3)

with x̄i and X̄ i representing the real displacement and magnitude of the response, respectively, at the
coordinate i. fi is the phase shift of the response xi. Unlike in the case of linear systems, where the principle of
superposition holds, the complex notation used here is actually an artificial expansion of real quantities into
the complex form; however, only the imaginary part is considered. This way the magnitude and the phase can
easily be handled.

It can be shown that inserting Eq. (3) into akxr
i x

q
j does not enable one to find describing functions in a closed

form, as in the case of one-coordinate or inter-coordinate terms, so, further imposing the relation fi � fj ¼

fij simplifies to

ot ¼ t; tþ fij ¼ cij (4)

with t as the new time variable and cij as the new variable comprising the frequency and the phase of the
response between the coordinates i and j. This enables us to find the Fourier coefficient for the i; j pair of the
kth internal force f̂ k, Fki;j ,

F ki;j ¼
i

p

Z 2p

0

f̂ inki;j
ðx̄j ; x̄iÞe

�icij dcij, (5)

where

akxr
i x

q
j � f̂ inki;j

¼ F ki;je
icij ¼ akCX̄

r

i X̄
q

j e
icij (6)

with C as an r- and q-dependent constant. Considering the relations

X̄ ie
icij ¼ X̄ ie

ifijeit ¼ X ie
it ¼ xi,

X̄ je
icij ¼ X̄ je

ifijeit ¼ X je
it ¼ xj (7)

and artificially expanding the expression from Eq. (6) to a number of terms that correspond to the number of
coordinates in the nonlinear term akxr

i x
q
j , the following is obtained:

akxr
i x

q
j ¼

1
2

akCX̄
r�1
i X̄

q

j xi þ
1
2

akCX̄
r

i X̄
q�1
j xj

¼ nðiÞðX̄ i; X̄ jÞxi þ nðjÞðX̄ i; X̄ jÞxj, ð8Þ

where nðiÞ and nðjÞ are multi-coordinate describing functions (MCDFs) for the term akxr
i x

q
j , and what is also

evident is that the restriction fi � fj ¼ fij is no longer needed. By considering all the MCDFs with respect to
the relations from Eq. (2) the multi-coordinate describing-function matrix (MCDFM) can be formed, GðX̄Þ,
relating the internal elastic force ðlinearþ nonlinearÞ, f in, and the complex displacement magnitudes, X

f̂ in � GðX̄ÞXeit; GðX̄Þ ¼ Klin þGnlðX̄Þ; G;X 2 C. (9)

GðX̄Þ can be, in general, represented by the linear part Klin and the nonlinear part GnlðX̄Þ, while together with
the mass and damping matrices designates the so-called HNSM, ZCSS

ZCSSðo; X̄Þ ¼ GðX̄Þ þ ioCCSS � o2MCSS. (10)

The HNSM defined in Eq. (10) is the nonlinear impedance matrix of the CSS that can be used in either the
impedance or FRF coupling approach [3,9,14] to couple the CSS with the linear part of the CS.
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3. Response determination and reconstruction

The system from Eq. (1) can be written in a more compact form

XI ;C ¼ Hnlðo;XCÞFI ;C (11)

with Hnlðo;XCÞ designating the frequency- and magnitude-dependent, nonlinear FRF matrix and with XI ;C

and FI ;C as displacement amplitudes and force amplitudes, respectively, partitioned in terms of I and C dofs.
The system of nonlinear algebraic equations from Eq. (11) is solved numerically, but to gain in terms of
efficiency, the linear part of the CS is usually reduced. All the internal dofs (i; I) can be removed (reduced)
except for those where there are external forces and those where the responses are to be calculated. For CSs
with many dofs this enables an efficient calculation, especially suitable for parametric analyses.

While the reduction is, in most cases, needed for an efficient calculation or even for the ability to calculate
the response of the CS, one can even reconstruct the nonlinear responses at the reduced internal dofs, i.e.,
if the modal properties of the LS are known and if the CSS model has only the so-called connection dofs,
the reduction of the full set of dofs, XIN ;C , can be written with respect to the reduced or master dofs, XIn;C ,
e.g. [3,12]

XIN ;C ¼ Ti;cXIn;C (12)

with the reconstruction matrix Ti;c

Ti;c ¼ FN�MFþn�M . (13)

The reconstruction matrix Ti;c contains the modal properties, the modal matrix F, of the LS, de-coupled from
the CS. M is the number of modal vectors used for the SEREP-based (system equivalent reduction-expansion
process, SEREP) reconstruction from Eq. (12), N is the number of all the dofs, while n is the number of master
dofs of the LS. For the partial modal matrix Fn�M from Eq. (13) to be unique, the following must hold, e.g.
Refs. [3,12]

Mpn ) rankðFn�MÞXM. (14)

This means that one usually has to retain as many internal dofs as there are modes used for the reconstruction.
For practical use this number can be relatively low with respect to the full, non-reduced system. Moreover, this
relation is also valid in cases when the LS part of the CS is formed of many parts in the de-coupled state, which
means that this approach is general and does not require special handling, only for the master–slave
partitioning, i.e., the partitioning used in Eq. (1). Fig. 3 shows the overall process of de-coupling the LS and
CSS parts from the CS, the reduction of both parts, the creation of the HNSM, the coupling and, finally, the
optional reconstruction.

4. Numerical case studies

To verify the proposed methods and the overall approach using the HNSM (see Fig. 1) the two numerical
case studies shown in Figs. 4 and 5 were investigated, with both satisfying the equation of nonlinear forced
motion under the steady-state condition

M €xþ C _xþ Kxþ fnlðxÞ ¼ fðtÞ ¼ F sinðotÞ (15)
x1

k

d1 d2

f (t)

x2

knl

m m

fn knl

δ
y

(a) (b)

Fig. 4. A 2-dof system with the second spring being nonlinear (a) and with two types of nonlinearities (b), cubic nonlinearity and

clearance.
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Fig. 5. Three nonlinear, first-order FRFs with the FRF of the underlying linear system from Fig. 4 and for the case of the cubic-hardening

stiffness. The amplitude of the forcing harmonic force was 0:5N (a) and 5N (b). (- - -) represents the FRF of the underlying linear system;

(-.-) represents the nonlinear FRF using the time-domain integration; (...) is the classical describing-function approach; (—) depicts the

HNSM approach.
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with M, C, K as the linear mass, linear damping and linear stiffness matrices, respectively, with fnl as the
nonlinear internal force and with F as the vector of force amplitudes. These two case studies were chosen as
they are simple enough to use the classical parallel-springs approach [8–13], as well as our, the HNSM
approach. Another numerical example, the beam structure, was then chosen to demonstrate the usage of the
HNSM approach on a structure were the simple parallel-springs-based approach cannot be used and to show
the importance of the reduction as well as the importance of the reconstruction.

4.1. 2-dof system

In this case, two types of nonlinearities were considered for the 2-dof system from Fig. 4(a), cubic-hardening
stiffness and clearance, Fig. 4(b). In both cases, the mass and damping properties were

M ¼
m 0

0 m

� �
; C ¼ dK; F ¼ ð0; F 0Þ

T (16)

with d as a factor of proportional, viscous damping and F 0 as an amplitude of the force at the second mass.

4.1.1. Cubic nonlinearity

In the case of the cubic nonlinearity, the underlying stiffness matrix and the exact internal nonlinear force in
the second spring were

K ¼
2k �k

�k k

� �
; fnl ¼

�knðx2 � x1Þ
3

knðx2 � x1Þ
3

 !
(17)

with k and kn as two constants for the linear and nonlinear stiffness, respectively. To validate our approach,
three approaches are shown for this particular case: the exact approach, using the direct numerical integration,
e.g. Ref. [9]; an approach using the inter-coordinate relation [8–13]; and the HNSM approach, presented in
this work. In the case of the inter-coordinate relation, the internal nonlinear force can be written with respect
to the inter-coordinate displacement y as

fnl ¼
�kny3

kny3

 !
; y ¼ x2 � x1 (18)



ARTICLE IN PRESS
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and following the classical DF approach with respect to inter-coordinate notation it follows that [8–13]

y � Yeit; ȳ ¼ IðyÞ ¼ Ȳ sinðtþ fÞ; Y ¼ X 2 � X 1, (19)

and finally,

fnl �
F1

F2

 !
eit ¼

n1Y

n2Y

 !
eit ¼

�kn
3
4

Ȳ
2

kn
3
4

Ȳ
2

0
@

1
AðX 2 � X 1Þe

it (20)

which can also be written in the form

fnl �
�n1 n1
�n2 n2

" #
X 1

X 2

 !
eit ¼ GnlXe

it. (21)

This is the classical approach using parallel springs, being useful only for some simple CSSs like in this case.
On the other hand, for the HNSM approach, the following approximation of the internal nonlinear force

can be used

f̂nl ¼
�knð�x3

1 þ x3
2 þ 3x2x

2
1 � 3x2

2x1Þ

knð�x3
1 þ x3

2 þ 3x2x2
1 � 3x2

2x1Þ

 !
(22)

which, after applying the approach from Section 2, gives the corresponding MCDFM

GnlðXÞ ¼
n11 n12
n21 n22

" #
¼
�knð�

3
4

X̄
2
1 þ

9
8

X̄ 1X̄ 2 �
9
8

X̄
2
2Þ �knð

3
4

X̄
2
2 þ

9
8

X̄
2
1 �

9
8

X̄ 1X̄ 2Þ

knð�
3
4

X̄
2
1 þ

9
8

X̄ 1X̄ 2 �
9
8

X̄
2
2Þ knð

3
4

X̄
2
2 þ

9
8

X̄
2
1 �

9
8

X̄ 1X̄ 2Þ

2
4

3
5 (23)

and thus

f̂nlðxÞ � GnlXe
it. (24)

Fig. 5 compares the three approaches to calculating the so-called first-order nonlinear FRF: the exact
approach, using time-domain numerical integration; the DF approach, using inter-coordinate notation; and
the HNSM approach, using the MCDFM. It is clear that the proposed HNSM approach is appropriate even
when larger nonlinearities are excited (Fig. 5(b)).

4.1.2. Clearance

The same approach can be used for the case of the clearance in the system from Fig. 4(a), but in this case the
linear stiffness matrix and the exact internal nonlinear force, respectively, were

K ¼
k 0

0 0

� �
; fnl ¼

�kðy� d
2
sgnðyÞÞ

kðy� d
2
sgnðyÞÞ

 !
; jyjX0 (25)

while the approximated, total internal force ðlinearþ nonlinearÞ was chosen first as

f̂nl1 ¼
a11x1 þ a12x2 þ a13x3

1 þ a14x3
2 þ a15x2

1x2 þ a16x1x
2
2

a21x1 þ a22x2 þ a23x3
1 þ a24x3

2 þ a25x2
1x2 þ a26x1x

2
2

 !
(26)

and then also as

f̂nl2 ¼
a11x3

1 þ a12x3
2 þ a13x2

1x2 þ a14x1x2
2

a21x3
1 þ a22x3

2 þ a23x2
1x2 þ a24x1x2

2

 !
. (27)

It was found that the second form, the form without the linear terms, Eq. (27), is a better approximation for
the clearance-type nonlinearity whose MCDFM is

Gnl ¼

3
4

a11X̄
2
1 þ

3
8

a13X̄ 1X̄ 2 þ
3
8

a14X̄
2
2;

3
4

a12X̄
2
2 þ

3
8

a13X̄
2
1 þ

3
8

a14X̄ 1X̄ 2

3
4

a21X̄
2
1 þ

3
8

a23X̄ 1X̄ 2 þ
3
8

a24X̄
2
2;

3
4

a22X̄
2
2 þ

3
8

a23X̄
2
1 þ

3
8

a24X̄ 1X̄ 2

2
4

3
5. (28)
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The exact and approximate total internal forces for the case of the clearance are shown in Fig. 6(a), while in
Fig. 6(b) examples of the first-order nonlinear FRFs are shown for the three approaches. Again, it was shown
that the HNSM model, though simple, is a proper choice, and using this approach one is able to predict the
nonlinear response amplitudes of CSs. To emphasize the importance of the proposed approach,
the calculation time for the exact nonlinear FRF from Fig. 6(b) took 7min, while for all the other
approaches the calculation took 20 s.
4.2. Beam structure

In the case of the beam-like structure from Fig. 7 the exact internal nonlinear force was

fnl ¼

kn1 ðy1 � y2Þ
3

kn2 ðj1 � j2Þ
3

�kn1 ðy1 � y2Þ
3

�kn2ðj1 � j2Þ
3

0
BBBB@

1
CCCCA; kn1 ¼ 5000

EI

l3
; kn2 ¼ 200

EI

l2
, (29)

where ji is the rotation and yi is the displacement of the beam’s finite element. The underlying linear
properties of each of the finite elements, the linear stiffness K and linear masses M, MCSS

K ¼
EI

l3

12 6l �12 6l

4l2 �6l 2l2

symm: 12 �6l

4l2

2
6664

3
7775; M ¼MCSS ¼

ml

420

156 22l 54 �13l

4l2 13l �3l2

symm: 156 �22l

4l2

2
6664

3
7775, (30)
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Fig. 6. The exact (filled surface) and the approximate (mesh) internal force for the case of clearance (a) and nonlinear first-order FRFs

with the FRF of the underlying linear system (Fig. 4) (b). The amplitude of the forcing harmonic function was 3N. (- - -) represents the

FRF of the underlying linear system; (-.-) represents the nonlinear FRF using the time-domain integration; (—) depicts the HNSM

approach.

1 2 . . . 10 11 . . . 15

I
C �1 �2

y1 y2CS CSS

(a) (b)

Fig. 7. A CS composed of two linear beams and one nonlinear beam as a CSS (a); the structure is modelled using 4dof finite elements (b).
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and the proportional, linear damping for the linear as well as for the nonlinear part

C ¼ 10M; CCSS ¼ 1000MCSS. (31)

The approximation of the force–deflection relation for the total internal force of the CSS model (linear+
nonlinear part), and for the kth component, was assumed to be

f̂ k ¼ ak1y1 þ ak2j1 þ ak3y2 þ ak4j2 þ ak5y3
1 þ ak6j3

1 þ ak7y3
2 þ ak8j3

2

þ ak9y
2
1j1 þ ak10y1j

2
1 þ ak11y2

1y2 þ ak12y1y2
2 þ ak13y2

1j2 þ ak14y1j
2
2

þ ak15j2
1y2 þ ak16j1y

2
2 þ ak17j2

1j2 þ ak18j1j
2
2 þ ak19y2

2j2 þ ak20y2j
2
2, ð32Þ

resulting in the two matrices representing the HNSM of the nonlinear, 4-dof beam element, the linear and
nonlinear part of the HNSM’s MCDF

KCSSlin ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2
6664

3
7775; GCSSnl ¼

n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44

2
6664

3
7775. (33)

The MCDFs from Eq. (33) are then (for the kth row)

nk1 ¼
3
4
ðak5Ȳ

2
1 þ

1
2

ak9Ȳ 1f̄1 þ
1
2

ak10f̄
2

1 þ
1
2

ak11Ȳ 1Ȳ 2 þ
1
2

ak12Ȳ
2
1 þ

1
2

ak13Ȳ 1f̄2 þ
1
2

ak14f̄
2

2Þ,

nk2 ¼
3
4
ðak6f̄

2

1 þ
1
2

ak9Ȳ
2
1 þ

1
2

ak10Ȳ 1f̄1 þ
1
2

ak15f̄1Ȳ 2 þ
1
2

ak16Ȳ
2
2 þ

1
2

ak17f̄1f̄2 þ
1
2

ak18f̄
2

2Þ,

nk3 ¼
3
4
ðak7Ȳ

2
2 þ

1
2

ak11Ȳ
2
1 þ

1
2

ak12Ȳ 1Ȳ 2 þ
1
2

ak15f̄
2

1 þ
1
2

ak16f̄1Ȳ 2 þ
1
2

ak19Ȳ 2f̄2 þ
1
2

ak20f̄
2

2Þ,

nk4 ¼
3
4
ðak8f̄

2

2 þ
1
2

ak13Ȳ
2
1 þ

1
2

ak14Ȳ 1f̄2 þ
1
2

ak17f̄
2

1 þ
1
2

ak18f̄1f̄2 þ
1
2

ak19Ȳ
2
2 þ

1
2

ak20Ȳ 2f̄2Þ (34)

and the final nonlinear impedance matrix, representing the HNSM of the CSS, was obtained using Eq. (10).
The result of the coupling at different reduction levels, and with the reconstruction, is shown in Fig. 8. At

least 14 master dofs are needed (out of 30) for a good reconstruction in this particular case. The number of
X
8-

1 
(m

)
φ 
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)
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)
φ 

(r
ad

)

f (Hz) f (Hz)(a) (b)

Fig. 8. Nonlinear receptance for the beam from Fig. 7 and the amplitude of the force of 40N and three different approaches. The node-set

retained f1 5 10 11 13 15g (a) does not yield a good result using reconstruction, while retaining one more node (two more dofs)

f1 5 8 10 11 13 15g (b) yields a result perfectly correlating with a direct (no reduction) approach. (—) represents the FRF of the underlying

linear system; (- - -) represents the nonlinear FRF using the HNSM approach without the reduction; (...) depicts the HNSM approach

using the reduction and the reconstruction.



ARTICLE IN PRESS
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dofs retained in the process of reduction is directly influenced by the number of modes used for the
reconstruction, so, in the event that there would be more dofs, the number of master dofs would remain
the same. Fig. 9 shows the time needed for a certain number of dofs in the calculation of the nonlinear FRF of
the beam. The importance of the reduction is therefore evident.
5. Experimental case study

The special-purpose T-structure shown in Fig. 10 was built [15] in order to verify the proposed approach: the
use of the HNSM on a real structure. A very simple structure, composed by two beams representing the linear
part of the structure (LS) and a bearing representing the nonlinear part of the structure (CSS), was chosen in
order to reduce the error in modelling the linear substructure as low as possible. This way the CSS model has
the greatest influence on how the experimental and analytical results of the connected structure correlate.
(a)

(b)

Fig. 10. A T-structure connected by two beams and a typical CSS system, a deep-groove ball bearing (a); the detail at the coupling region

shows the linear part of the structure and the CSS model of the bearing in a de-coupled state (b).

t (
s)

N DOFs

Fig. 9. The exponential growth of the nonlinear-FRF calculation time with respect to the number of dofs retained for the case of the beam

structure from Fig. 7.
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The two beams were modelled and updated in the linear domain using a FE package. The response model
for each of the two beams was obtained by a modal synthesis using 60 modes; e.g., for the p; q dofs, the
accelerance using the hysteretic and proportional damping model, HApq

, is [16]

HApq
ðoÞ ¼ �o2

Xm

r¼1

fprfqr

o2
r � o2 þ iZro2

r

(35)

with the modal damping Zr identified with Ewins–Gleeson’s EMA method, with the terms from the modal
matrix fpr and undamped natural frequencies or obtained using the linear finite-element software. This
corresponds to the top part of the algorithm in Fig. 1.

The detailed, nonlinear CSS model for the bearing (see the corresponding blocks in Fig. 1), used for the
determination of the coefficients for the internal-force approximation, was a 6-dof nonlinear model from [17]
and further expanded to a 12-dof model [18], as shown in Fig. 11(a). The internal-force approximation, using
the linear and cubic terms, was the same as in the case of the joint between the beams from Section 4.2

f̂ k ¼ f̂ kðxÞ ¼
Xn

j¼1

akj
xj þ

Xn

j¼1

bkj
x3

j þ
Xn�1
j¼1

Xn

i¼jþ1

ckj;i x
2
j xi þ

Xn�1
j¼1

Xn

i¼jþ1

dkj;i xjx
2
i (36)

the result of which is shown in Fig. 11(b) for the example of an x and y displacement-dependent internal force
in the y direction. The HNSM model for the bearing (the middle part of the algorithm from Fig. 1) was
obtained in the same way as in Section 4.2. FRF coupling from Eq. (1) was used to couple two LSs, the two
beams, with the CSS model, the HNSM of the bearing—note the corresponding block in Fig. 1.

Fig. 12 shows two experimental FRFs on the T-structure [15] obtained using random excitation at two
different RMS values of the excitation force. Thus obtained FRFs are so-called linearized FRFs that cannot
show nonlinear phenomena. On the same graphs there are also numerically obtained nonlinear FRFs using
coupling and the HNSM approach proposed, but under the constant excitation force-amplitude over the
whole frequency band of interest—these are nonlinear FRFs that can show the nonlinear phenomena, e.g.,
jump phenomena. In the frequency band of the first two resonances the numerical prediction is quite
satisfactory, even in terms of amplitudes and not only in terms of resonance locations.

In order to investigate any possible nonlinear phenomena experimentally and to compare directly to the
numerical results, the T-structure was also tested using sine excitation with a constant amplitude of the force.
Fig. 13 shows three experimental accelerance FRFs [15] with the corresponding numerical FRFs where the
overall agreement, shown around the first resonance area, is again satisfactory up to 300Hz, in the bandwidth
of the first two resonances. The experimental results from Fig. 13, especially the FRFs for the force of 6 and
10N, apparently did not exhibit the same nonlinear behaviour as the corresponding numerical FRFs. The
reason is, that, although a special-purpose measurement hardware was used (hardware loop-control) with the
aim to provide a constant force on the input, at the input force of 6 and 10N the hardware did not succeed to
maintain the force level constant around resonances.
Knl (x)

(6 DOFs)

(6 DOFs)

f y

-4

(a) (b)

Fig. 11. The 12-dof bearing model [17,18] (a); the exact (filled surface) and the approximate (mesh) internal force–displacement relation

for the bearing’s HNSM model (b).
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Fig. 13. The experimental and numerical accelerance FRFs for three levels of the excitation force around the first resonance: the

experimental FRFs are shown at forces of 1N ðþÞ, 6N (o) and 10N (*); the numerical FRFs are shown at forces of 1N (–), 6N (- -) and

10N (...). In all cases the excitation force was constant.
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Fig. 12. Experimental accelerance FRFs (-.-) with the random excitation and the numerical FRFs (—) with the constant force for the

107F2; 8F2 coordinate pair. Amplitude and/or RMS level of the force was 1N (a) and 6N (b).
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The not-so-good agreement between the experimental and the numerical FRFs in the frequency band from
300Hz and above is a result of the simple model of the bearing and, most probably, due to the modelling
simplification of the connection between the bearing’s outer ring and the beam that was assumed to be rigid;
i.e., in the bearing, only the balls were assumed being elastic.

6. Conclusions

The proposed approach of building the HNSM for a steady-state vibration analysis of CSs proves to be
valid with respect to a direct approach using numerical integration or even with respect to the classical
describing-function approach using inter-coordinate notation (where applicable, e.g., in this paper shown for
the cubic nonlinearity and the clearance of a 2-dof system). Also, this approach can be enhanced to account
for higher harmonics. Eventually, this approach (the HNSM) enables us to build a model of a CSS in the form
of the linear and nonlinear parts which means that a choice of whether a nonlinear part can be neglected or not
can easily be made. This can be done by simply performing a preliminary analysis with and without the
nonlinear part. The latter would not be possible in the case of the harmonic balance approach for example.
The harmonic balance approach also needs additional iteration, which makes this approach less efficient than
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in the case of the describing functions. Moreover, the reduction of the linear and nonlinear parts, together with
the expansion, speeds up the calculation considerably, while the accuracy of the results is preserved if a
sufficient number of master coordinates is retained.

Experimental results on a special-purpose T-structure showed that the proposed approach of incorporating
localised nonlinearities in the form of the HNSM can be used to predict the nonlinear FRFs of real structures
having such nonlinear elements, in terms of resonances as well as in terms of amplitudes. Due to
simplifications in the modelling of the bearing and due to the reduction and the two-stage approximation in
the process of building the HNSM, the experimental results were satisfactory around the first two resonances.
Further work on different types of CSS systems, on use of different detailed CSS models as well as different
HNSM models is still required in order to be able to draw additional conclusions on the use of the HNSM
proposed.
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